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Shear Formula for Beams of
Variable Cross Section

Joseph L. Krahula*
Rensselaer Hartford Graduate Center, Hartford, Conn.

HE formula for evaluating the shearing stress in a
beam of constant cross section is well known. The
derivationt of this formula may be found in most strength-of-
materials undergraduate texts.!
Proceeding in the same manner as for beams of constant
cross section,! the formula
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may be derived for beams of variable cross section. The
assumptions and limitation in Eq. (1) are the same as those for
constant cross sections and the quantities M, Q, I, and b have
the same definition as those in Ref. 1. Equation (1) is valid for
beams of variable height and variable thickness (such as
tapered I beams), and reduces to the Zuravski formula for
constant cross section since then Q and / are constant.
Solutions using Eq. (1) will now be compared to those exact
solutions obtained by theory of elasticity.

Solution 1

Consider bending of the wedge shown in Fig. 1. Equation
(1) in this caseyields

Ty =—Px/I @)

An exact elasticity solution of this problem (for a small angle
a) derived in Ref. 2, p. 111, Eq. (¢), is

7= —Px?[ (tano/a)?sin*@]/y

Equation (2) compares well with the exact solution for a small
wedge angle 2. Table 1 compares the ratios of the shearing
stress (on the inclined surface) for increasing semi-wedge
angle. Equation (1) is within 13% of the exact solution for
wedges with <20° or for beams with aspect ratios (¢ /) =
1.37.

Solution 2

The problem of the bending of the wedge of Fig. 1 may also
be solved (for ¢,), when the thickness is a - polynominal func-
tion of the radial coordinate r, using the method of Ref. 3.
The solution for the vertical shearing stress for small wedge
angles « and thickness f=#,r is

3 P x? tano T3
Ty=— — —— —;tana| —— | cos’f
2 tg X0 o

where x, =y tan «. Equation (1) yields in this case
Ty = —3Px’tan of (2tyx})

again indicating that this solution is valid for a narrow wedge
with a linearly varying height as well as a linearly varying
thickness.
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Fig. 1 Bending of a wedge by
a force applied at the end.

b

Table 1 Comparison of the ratio of 7, from Eq. (2) and Eq. (¢) of

Ref. 2.
«a (deg) 1 5 10 15 20 25 30
% error 0.03 0.77 3.1 7.1 13.1 214 326

©
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8 Fig. 2 Retaining wall subjected to the
o}
pressure of water.
v
Y

P=2667£b.
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Fig. 3 Tapered beam used to compare elasticity and Eq. (1)
solutions.

Table 2 Comparison of elasticity and strength of material solutions
for shearing stress in 2 narrow and a widely tapered beam of Fig. 3

Coord- Loc- Narrow Coordi- Loc- Wide

inate ations wedge (a=3) nate ations wedge
(x=20)

X y Eq.(DEq.(3) x y Eg. (1)Eq. (3)
2 0 1360 1366 2 0 32.6 425
2 0.93 1753 1758 2 6.03 152.7 249.6
2 1.87 2933 2932 2 12.07 513.1 564.9
2 2.8 4898 4880 2 18.1 1113.7 691.4

10 0 2667 2678 10 0 96.8 126.3

10 0.67 2963 2967 10 35 290.3 445.3
10 1.33 3852 3845 10 7.0 870.9 947.7
10 2.0 5334 5333 10 10.5 1838 1162.7

at point A 10,688 10,711 at point A 10,668 13,940

Solution 3

Consider next bending of the retaining wall of Fig. 2. The
quantities entering Eq. (1) for this case are

M=qy3/6 'I=(y tan 8)3/12 Q=x(y tan 8—x)/2
and hence '
T, =d/dy [gx(ytanf—x) /tan3B] = gx/tan?p

The exact elasticity solution of this problem, Eq. (6.75) of
Ref. 4, yields the same solution.
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The authors in Refs. 2 and 4 should not compare their exact
solutions with the Zuravski formula, since this formula is not
applicable for beams of variable cross section. The present
author shows that a comparison of the solutions in Refs. 2
and 4 with those from Eq. (1) results in satisfactory
agreement. These solutions could also be compared using the
method derived in Ref. 5 for beams of variable height and
constant thickness.

The tapered beam of constant thickness shown in Fig. 3 will
now be analyzed for shearing stress using theory of elasticity
and strength of materials, Eq. (1). An elasticity solution to the
beam problem of Fig. 3 may be obtained by a proper super-
position of the solutions given for the beams of Figs. 64 and
65 in Ref. 2. Such a solution is

Ty =0,8in20/2+ 71,0520 where 0,=0 (3a)
_ 2Psiné 2Pasin20
Ir= r(2a—sin2a) r2(sin2q—2acos2a)
Pa(cos20—cos2
To=— (cos ) (3b)

r? (sin2o—20cos 2ar)

A narrow wedge («=3) and a wide wedge (=20} of the
tapered beam shown in Fig. 3 have been solved for the
shearing stress at several points. The results calculated by
theory of elasticity Eq. (3) and strength of materials Eq. (1)
are summarized in Table 2. The maximum shearing stress,
which occurs at point A (Fig. 3) is also included. These results
again indicate that Eq. (1) may be used for the narrow tapered
beam. Since solutions obtained from Eq. (1) may be used for
tapered beams with small wedge angles, it appears that Eq. (1)
may also be used for beams of various other shapes and
thickness.
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Peak Distributions of Random
Response Processes

K.S.S. Iyer* and S. Balasubramoniant
College of Military Engineering, Pune, India

has been recognized! that, from the standpoint of the
trength of a linear or nonlinear structure, it is more im-
portant to study the stochastic distribution of the peak and the
highest peak of the response, rather than that of the response
itself, when systems are analyzed against random excitations
of the stationary or nonstationary type.
A peak or a maximum in a sample random function x(¢) of
a continuously valued random process if also continuous with
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time ¢ and occurs when X(f) is zero and X(f) is negative,
where x(f) represents the response of the system, single or
multidegree of freedom, maybe stress, displacement, or strain
at a critical point or zone and x(#), X(?) its first and second
derivatives, respectively.

In a large class of problems, the designer will only be in-
terested in estimating the distribution of the largest of the
maximum occurring within a specified period, and the
distribution of the peaks may be of little concern to him.

Standard methods to estimate the distribution of the peaks
making use of the joint probability density function of x(?),
x(f), and X(f) involve tedious numerical calculations.?
However, no exact procedure is available for the evaluation of
the distribution of the largest of the peaks. An approximate
solution to these problems is attempted in this study.

Analysis

If x(¢) represents a nonstationary random process, say the
response of a single degree of freedom system, the number of
extrema in x(?), (X, £;, ¢,) above a specified level N within a
time interval (¢;, ¢,) can be expressed as?

vt ={ 1) 1612(0) 11Lx(1) —A]de 1)

where 1 [ ] represents Heaviside’s step function and 6 [ ]
Dirac’s delta function.

Following Rice,? the expected number of times a level is
crossed from below in an interval (£, £,) is given by

2

EIN(Mt,1) ] =S S: X p(n%1) dxde 2

4]

where p(x, X; 1) is the joint function of x () and x(¢) given by

. 1 1 x 12
pP(x X t)= ——————— ex [— S { =
2w 0,(1—p?) " P 2(1-p?) o;
2pxx X )2
]
0,0, 5]

where p(?) is the correlation function of x(¢) and x(#); ¢,(¢) and
a,(¢) are the standard deviations of x(#) and x(¢), respectively.
The expected number of peaks above the zero level of respon-
se can then be estimated using Eq. (2) with A=0, assuming
that there is only one peak associated with the response
process crossing this level. The probability distribution func-
tion of the peaks at thelevel N, F, (A, £)is then

2 fo
S, SO 1% p (N %;f)dxdt

12 ra (4)
S S %1 p(0,%:1) didt
Iy 80

For estimating the probability density and distribution of
the largest of the maxima, the results obtained by Davenport*
are used. The probability p, (A7) that the largest of the peaks
has a value N is that one of the maxima has this value and the
rest are smaller within the interval considered. The required
probability can thus be expressed as:

p;()x,l)=N[1—Fp()\,t)]N"de()\,t)/d)\ (5)

Where N is the expected number of peaks in the interval
(t;, t,) above the zero level and is given by Eq. (2) with A=0.
The statistical properties of the distribution can be easily
estimated from Eq. (5). For example, the mean of the largest
of the maxima, L (\,?) is given by

Lo = p vonan ©



